GlusterFS is a userspace filesystem. This was a decision made by the GlusterFS developers initially as getting the modules into linux kernel is a very long and difficult process.

Being a userspace filesystem, to interact with kernel VFS, GlusterFS makes use of FUSE (File System in Userspace). For a long time, implementation of a userspace filesystem was considered impossible. FUSE was developed as a solution for this. FUSE is a kernel module that support interaction between kernel VFS and non-privileged user applications and it has an API that can be accessed from userspace. Using this API, any type of filesystem can be written using almost any language you prefer as there are many bindings between FUSE and other languages.

Structural diagram of FUSE


This shows a filesystem “hello world” that is compiled to create a binary “hello”. It is executed with a filesystem mount point /tmp/fuse. Then the user issues a command ls -l on the mount point /tmp/fuse. This command reaches VFS via glibc and since the mount /tmp/fuse corresponds to a FUSE based filesystem, VFS passes it over to FUSE module. The FUSE kernel module contacts the actual filesystem binary “hello” after passing through glibc and FUSE library in userspace(libfuse). The result is returned by the “hello” through the same path and reaches the ls -l command.

The communication between FUSE kernel module and the FUSE library(libfuse) is via a special file descriptor which is obtained by opening /dev/fuse. This file can be opened multiple times, and the obtained file descriptor is passed to the mount syscall, to match up the descriptor with the mounted filesystem.